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Abstract
In this paper we determine the fusion rules of the logarithmicWp,q triplet theory
and construct the Grothendieck group with subgroups for which consistent
product structures can be defined. The fusion rules are then used to determine
projective covers. This allows us also to write down a candidate for a modular
invariant partition function. Our results demonstrate that recent work on the
W2,3 model generalizes naturally to arbitrary (p, q).

PACS number: 11.25.Hf

1. Introduction

Logarithmic conformal field theories appear in the description of critical points in many
interesting physical systems. Some examples are polymers, spin chains, percolation and sand-
pile models, see for example [1–9] for some recent papers. A lot of effort has been invested
recently to try and understand these theories in a general context. For example the logarithmic
conformal field theories from the (1, p)-series have been studied in quite some detail and their
structure is now largely understood [10–16]. However, the more general (p, q)-series for p, q

coprime and p, q � 2 are not as well understood yet, though there has been some progress
recently [17–20]. These theories are referred to as the Wp,q triplet models, and they can be
naturally associated with the minimal models for p, q � 2.

The goal of this paper is to generalize the results of [17], where the W2,3 model was
studied, to general (p, q). In particular we obtain the fusion rules of the Wp,q triplet models.
This is obviously a prerequisite for any detailed analysis of this theory. We also study the
Grothendieck group that plays a vital role in the boundary description of conformal field
theories. One novel feature of the Wp,q models is that the vacuum representation is reducible
but indecomposable and we believe that it is responsible for the fact that the structure of the
Wp,q models, though closely related to that of the minimal models and the W1,p models, is a
lot more complicated than either.

We determine the fusion rules by first generalizing the representations appearing in [17]
for arbitrary p, q in section 2. For a subset of these representations the fusion rules have
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already been determined in [18, 19] and we will propose a way to extend these rules in an
associative manner to all the other representations in section 3 (with consistency checks in
appendix E for certain explicit values of (p, q)). In section 4 we determine the subgroup of the
Grothendieck group for which a consistent product structure induced by the fusion rules can
be defined. In section 5 we address the problem of determining the projective representations
among our representations and suggest a candidate for a modular invariant bulk spectrum.

2. Representations and their structure

We begin with a quick review of minimal models and their generalization to logarithmic
theories; for details on our notation please consult appendix A. The Virasoro (non-logarithmic)
minimal models and Wp,q-models are labelled by coprime positive integers (p, q) and have
central charge

cp,q = 1 − 6
(p − q)2

pq
. (2.1)

The irreducible representations have weights

hm,n = (pn − qm)2 − (p − q)2

4pq
, (2.2)

where m and n are positive integers, and hm,n = hp−m,q−n.
The non-logarithmic minimal models are representations of the vertex operator algebra

(VOA) also known as the vacuum representation V(h1,1 = 0). This is the irreducible highest
weight representation of the Virasoro algebra based on the highest weight state � with weight
h = 0. The corresponding Verma module has two nullvectors N1 and N(p−1)(q−1) at levels 1
and (p − 1)(q − 1) respectively. Setting both nullvectors to zero one obtains the irreducible
vacuum representation based on �. The highest weight representations V(ha,b) of the VOA
with weight ha,b are the representations of the Virasoro algebra for which the modes of the
vertex operators V (N1, z) and V (N(p−1)(q−1), z) act trivially.

The logarithmic theories of interest in this paper are constructed by only quotienting
out the nullvector at level 1 in the Verma module corresponding to the VOA but not the
nullvector at level (p − 1)(q − 1). This prevents the the VOA from being irreducible,
but it is still indecomposable. The corresponding theory is not rational, however, since
the fusion of irreducible representations of this VOA no longer closes on a finite set. The
repeated fusion of irreducibles produces an infinite series of irreducible representations with
weights of the form (2.2) as well as reducible but indecomposable combinations of these
irreducible representations. To restore rationality the chiral algebra is enlarged by three fields
of conformal weight (2p−1)(2q−1). We denote the resulting VOA byW(p, q), its irreducible
highest weight representations of weight h are denoted by W(h). The fusion of irreducible
representations of W(p, q) closes on a finite set, but apart from an irreducible representation
for every weight of the form (A.1), this set also includes reducible but indecomposable
combinations of these representations.

2.1. Representation content

The Wp,q-models close under the conjectured fusion rules of a grand total of 4pq +
13 (p−1)(q−1)

2 − 2 representations. This is the smallest such set of representations, containing
the vertex operator algebra (VOA) and the irreducible representations. For convenience, we
group these representations into two lists B and N. The labelling of the weights in the following
lists is explained in (A.1).
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Representations of type B

• 2(p + q − 1) irreducible representations:

W(h(r,q,±)) and W(h(p,s,±)). (2.3)

It was shown in [20] that these irreducible representations can be interpreted as infinite
sums of Virasoro representations.

• 4pq −2(p+q) rank 2 representations which are reducible but indecomposable and whose
L0 action is not diagonalizable but rather contains 2 × 2 Jordan blocks:

R(2)(h(a,b,+);h(p−a,b,−)) R(2)(h(a,b,+);h(a,q−b,−))

R(2)(h(a,q−b,−);h(a,b,+)) R(2)(h(p−a,b,−);h(a,b,+))

R(2)(h(a,q,+)) R(2)(h(p−a,b,−))

R(2)(h(p,b,+)) R(2)(h(p,q−b,−)).

(2.4)

The first entry in R(2)(h1;h2) or R(2)(h) is the weight of the cyclic vector that generates
the entire representation. For weights of type h(a,b,±) this does not uniquely determine the
rank 2 representation and an extra weight h(a′,b′,∓) is required to specify the representation
in question.

• 2(p−1)(q−1) rank 3 representations which are reducible but indecomposable and whose
L0 action is not diagonalizable but rather contains 3 × 3 Jordan blocks:

R(3)(h(a,b,±)). (2.5)

Here the argument h of R(3)(h) is the weight of the generating cyclic state.

Note that the rank 2 and 3 representations are obtained by repeated products of the irreducible
representations.

Representations of type N

• 1
2 (p − 1)(q − 1) irreducible highest weight representations coming from the non-
logarithmic minimal model:

W(h(a,b,0)) = W(h(p−a,q−b,0)). (2.6)

It was shown in [20] that these irreducible representations are just the irreducible Virasoro
representations of the same weight.

• (p − 1)(q − 1) rank 1 highest weight representations

Wa,b, (2.7)

which are reducible but indecomposable and whose L0 action is diagonalizable. These
representations were also introduced in [19].

• (p − 1)(q − 1) conjugates of the rank 1 representations Wa,b which we shall denote by

W∗
a,b. (2.8)

• 2(p − 1)(q − 1) irreducible highest weight representations with weights that are
descendants of those appearing in the non-logarithmic minimal models:

W(h(a,b,±)). (2.9)

It was shown in [20] that these irreducible representations can be interpreted as infinite
sums of Virasoro representations.
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By the same arguments as in [17] we believe that the representations of type B are those
that define a consistent boundary theory and therefore also show up in lattice considerations
such as [18], where fusion rules for representations of this type are presented. For these
representations the notion of duals and contragredients is the same (in fact these representations
are self-contragredient and therefore also self-dual); see [17] section 3 for further details on
duals and contragredients. It is also reassuring to note that this generalization matches the
representations appearing in [18] exactly. By contrast the representations of type N do not
define a consistent boundary theory, and, with the exception of the representations of type
Wa,b, the fusion rules for these representations are not yet known. The goal of this paper is to
extend the fusion rules to include all representations of type N.

The representations of type W(h(a,b,0)) are a somewhat special class of representations in
N and have to be considered separately in a number of cases in our analysis. We will therefore
restrict ourselves to N×, the set of all representations of types Wa,b, W∗

a,b or W(h(a,b,±)),
whenever we need to temporarily exclude the representations of type W(h(a,b,0)) from our
considerations. In order to be able to extend the fusion rules to N×, we need to understand the
detailed structure of representations of types Wa,b and W∗

a,b a little better.

• The representations of type Wa,b correspond to weight h(a,b,0) Verma modules where only
the nullvector at level ab is quotiented out, but not the nullvector at level (p − a)(q − b).
They are characterized by the short exact sequences

0 −→ W(h(a,b,+)) −→ Wa,b −→ W(h(a,b,0)) −→ 0, (2.10)

i.e. W(h(a,b,+)) is a subrepresentation of Wa,b, which implies

W(h(a,b,0)) = Wa,b/W(h(a,b,+)). (2.11)

In particular the fusion of Wa,b is the same as that of W(h(a,b,0)) with all representations
whose fusion with W(h(a,b,+)) vanishes. This class of representations includes the VOA
W(p, q) ≡ W1,1.

• The representations of type W∗
a,b are generated by cyclic vectors of weight h(a,b,+). These

cyclic vectors are not highest weight however. We conjecture in analogy to [17] that
the positive modes of the chiral algebra map the cyclic vector to a vector that generates
W(h(a,b,0)) as a subrepresentation and that representations of type W∗

a,b are characterized
by the short exact sequences

0 −→ W(h(a,b,0)) −→ W∗
a,b −→ W(h(a,b,+)) −→ 0. (2.12)

This implies

W(h(a,b,+)) = W∗
a,b/W(h(a,b,0)). (2.13)

In particular the fusion of W∗
a,b is the same as that of W(h(a,b,+)) with all representations

whose fusion with W(h(a,b,0)) vanishes.

3. Fusion rules

As mentioned in the introduction the fusion rules for representations of type B as well as
representations of type Wa,b have already been determined in [18, 19]. For the representations
of type W(h(a,b,0)) the fusion rules are given by the minimal model fusion rules which have
already been known for quite some time [21].

We will now extend the the fusion rules to include all representations of type N, by first
considering products of representations of type N× with representations of types B or N×,
before considering representations of type W(h(a,b,0)). The general strategy is to rewrite
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all representations in N as the the fusion product of a representations of type Wa,b and
W(h(1,1,0)), W(h(1,1,+)), W(h(1,1,−)) or W∗

1,1. Using commutativity and associativity of the
fusion product together with conjectured fusion rules for W(h(1,1,0)), W(h(1,1,+)), W(h(1,1,−))

and W∗
1,1, we can then define fusion rules for all of N.

3.1. Products involving representations of type N×

3.1.1. The conjectured fusion rules for W(h(1,1,+)), W(h(1,1,−)) and W∗
1,1. In order to extend

the fusion rules to representations of type N×, we first need to understand the fusion rules of
W(h(1,1,+)), W(h(1,1,−)) and W∗

1,1. In analogy to [17] and inspired by [20], we conjecture that
W(h(1,1,+)), W(h(1,1,−)) and W∗

1,1 obey the following fusion rules:

W(h(1,1,+)) ⊗ W(h(1,1,+)) = W∗
1,1 W(h(1,1,−)) ⊗ W(h(1,1,−)) = W∗

1,1

W(h(1,1,+)) ⊗ W(h(1,1,−)) = W(h(1,1,−)).
(3.1)

In appendix E we check W(h(1,1,+)) ⊗ W(h(1,1,+)) for a number of cases using the NGK-
algorithm introduced in [22, 23]. From (3.1) we can derive the remaining three products using
associativity and the quotient (2.13):

W(h(1,1,+)) ⊗ W∗
1,1

(2.13)= W(h(1,1,+)) ⊗ W(h(1,1,+)) = W∗
1,1 (3.2)

W∗
1,1 ⊗ W∗

1,1
(3.1)= W(h(1,1,+)) ⊗ W(h(1,1,+)) ⊗ W∗

1,1

(3.2)= W(h(1,1,+)) ⊗ W∗
1,1

(3.2)= W∗
1,1 (3.3)

W∗
1,1 ⊗ W(h(1,1,−))

(3.1)= W(h(1,1,+)) ⊗ W(h(1,1,+)) ⊗ W(h(1,1,−)) (3.4)
(3.1)= W(h(1,1,+)) ⊗ W(h(1,1,−)) = W(h(1,1,−)).

The use of the quotient (2.13) is justified, because W(h(1,1,0)) ⊗ W(h(1,1,+)) = 0 as we will
see in (3.17). Again in analogy to [17], we conjecture that for representations of type Wa,b

the fusion with the representations W(h(1,1,+)), W(h(1,1,−)) and W∗
1,1 is given by

W∗
1,1 ⊗ Wa,b = W∗

a,b, W(h(1,1,+)) ⊗ Wa,b = W(h(a,b,+)),

W(h(1,1,−)) ⊗ Wa,b = W(h(a,b,−)).
(3.5)

This is enough information to determine the product of the representations of type N× using
the fusion rules for two representations of type Wa,b listed in appendix C.

To determine the product of a representation of type N× and a representation of type B,
it is sufficient to conjecture (also in analogy to [17]) the action of W(h(1,1,+)) and W(h(1,1,−))

on the irreducible representations

W(h(1,1,+)) ⊗ W(h(r,q,±)) = W(h(r,q,±)), W(h(1,1,+)) ⊗ W(h(p,s,±)) = W(h(p,s,±)),

W(h(1,1,−)) ⊗ W(h(r,q,+)) = W(h(r,q,−)), W(h(1,1,−)) ⊗ W(h(p,s,+)) = W(h(p,s,−)),

(3.6)

since the rank 2 and rank 3 representations are products of the irreducible representations. On
representations of type B the action of W∗

1,1 is the same as that of W(h(1,1,+)), because of (3.1)
and associativity.

In summary the 3pq conjectured products (3.1), (3.5) and (3.6) are sufficient to extend
the fusion rules to N× by associativity and commutativity.
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3.1.2. Closed fusion formula for N×. In an attempt to improve readability, we now introduce
some more notation that will help us apply (3.1), (3.5) and (3.6) to arbitrary products. For
every label (a, b) we associate four representations of type N×:

Wa,b

N−N+

N∗

W(h(a,b,+))
N−

N∗
N+

B

W(h(a,b,−))
B

N−

W∗
a,b

N−

B

(3.7)

The four labels N±,∗ and B of the arrows are maps from the set of representations to itself,
that are linear with respect to direct sums, i.e. for a sum of representations they are evaluated
for each representation separately.

(1) B maps representations of type N× to their corresponding representation in (3.7) of type
Wa,b:

B(Wa,b) = B(W∗
a,b) = B(W(h(a,b,+))) = B(W(h(a,b,−))) = Wa,b, (3.8)

and acts as identity for representations of type B. The image of B is therefore the
representations of type B and representations of type Wa,b. For these representations the
fusion rules have already been determined in [18, 19].

(2) The map N∗ corresponds to the action of W∗
1,1 in [17], generalized for arbitrary (p, q). It

maps the representations in (3.7) to

N∗(Wa,b) = N∗(W∗
a,b) = N∗(W(h(a,b,+))) = W∗

a,b

N∗(W(h(a,b,−))) = W(h(a,b,−)),
(3.9)

and acts as the identity on representations of type B. This corresponds precisely to the
fusion products in (3.2)–(3.4).

(3) The map N+ corresponds to the action of W(h(1,1,+)) in [17], generalized for arbitrary
(p, q). It maps the representations in (3.7) to

N+(Wa,b) = W(h(a,b,+))

N+(W∗
a,b) = N+(W(h(a,b,+))) = W∗

a,b (3.10)

N+(W(h(a,b,−))) = W(h(a,b,−))

and acts as the identity on representations of type B. This corresponds precisely to the
fusion products in (3.1).

(4) The map N− corresponds to the action of W(h(1,1,1−)) in [17], generalized for arbitrary
(p, q). It maps the representations in (3.7) to

N−(Wa,b) = N−(W∗
a,b) = N−(W(h(a,b,+))) = W(h(a,b,−))

N−(W(h(a,b,−))) = W∗
a,b, (3.11)

and on representations of type B it exchanges the weights h(r,s,±) by h(r,s,∓):

N−(W(h(r,q,±))) = W(h(r,q,∓)), N−(W(h(p,s,±))) = W(h(p,s,∓)),

N−(R(2)(h(r,q,±))) = R(2)(h(r,q,∓)), N−(R(2)(h(p,s,±))) = R(2)(h(p,s,∓)),

N−(R(2)(h(a,b,±);h(a′,b′,∓))) = R(2)(h(a,b,∓);h(a′,b′,±)),

N−(R(3)(h(a,b,±))) = R(3)(h(a,b,∓)).

This corresponds precisely to the fusion products in (3.1).

6
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By straightforward computation, we see that N±,∗ and B satisfy the following composition
rules:

N∗ ◦ N∗ = N∗, N+ ◦ N+ = N∗, N− ◦ N− = N∗, (3.12)

N∗ ◦ N+ = N+ ◦ N∗ = N∗, N∗ ◦ N− = N− ◦ N∗ = N−,

N− ◦ N+ = N+ ◦ N− = N−,

B ◦ N±,∗ = B, N±,∗ ◦ B = N±,∗.

As a final piece of notation, when we write NA for some representation A, we mean

NA =

⎧⎪⎪⎨
⎪⎪⎩

N∗ A = W∗
a,b

N+ A = W(h(a,b,+))

N− A = W(h(a,b,−))

id else.

(3.13)

This notation allows us to write

A = NA ◦ B(A). (3.14)

This is just another way of writing (3.5) in terms of N and B.
Armed with all the information and notation of this section, we can then see that the product

of two indecomposable representations A and B (remember that we are not yet considering
representations of type W(h(a,b,0))) is given by

A ⊗ B = NA ◦ NB(B(A) ⊗ B(B)). (3.15)

In effect, this is simply rewriting the product of A and B in term products involving
W(h(1,1,+)), W(h(1,1,−)) and W∗

1,1 as well as the known product B(A) ⊗ B(B). The product
B(A) ⊗ B(B) is evaluated using the fusion rules in [18, 19] and NA ◦ NB is then applied to
the result. As an example, we will compute W(h(1,2,+))⊗W(h(1,2,−)) for q � 3. Using (3.15)
we find,

W(h(1,2,+)) ⊗ W(h(1,2,−)) = NW(h(1,2,+)) ◦ NW(h(1,2,−))(W1,2 ⊗W1,2)= N+ ◦ N−(W1,2 ⊗W1,2)

= N+ ◦ N−(W1,1 ⊕ W1,3) = N−(W1,1 ⊕ W1,3)

= N−(W1,1) ⊕ N−(W1,3) = W(h(1,1,−)) ⊕ W(h(1,3,−)),

where W1,2 ⊗ W1,2 was evaluated using (C.1). It is easy to check that (3.15) agrees with
(3.1)–(3.6). We will show in section 3.3 that it leads to associative fusion rules.

3.2. Products involving representations of type W(h(a,b,0))

The final step towards extending the fusion rules to all representations of type N is to consider
products involving representations of type W(h(a,b,0)). As a first step we consider products
of the form W(h(1,1,0)) ⊗ W(h(r,s,±)). As mentioned before, the representations of type
W(h(a,b,0)) come from the non-logarithmic minimal model and satisfy the minimal model
fusion rules among themselves:

W(h(a,b,0)) ⊗ W(h(a′,b′,0.)) =
min{a+a′−1,2p−1−a−a′}∑

k=1+|a−a′|
k+a+a′=1 mod 2

min{b+b′−1,2q−1−b−b′}∑
l=1+|b−b′ |

l+b+b′=1 mod 2

W(h(k,l,0)). (3.16)

Since W(h(1,1,0)) is the VOA of the non-logarithmic minimal model, its fusion acts as the
identity on representations in the non-logarithmic minimal model and the product with any
other irreducible representations vanishes. Therefore, we have

W(h(1,1,0)) ⊗ W(h(r,s,±)) = 0. (3.17)

7
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This also ties in with what one would expect from the NGK-algorithm in [22, 23] on the level
of the Virasoro algebra1.

Using associativity and the fact that W(h(1,1,0)) acts as the identity on representations of
type W(h(a,b,0)), we can compute a more general version of (3.17):

W(h(a,b,0)) ⊗ W(h(r,s,±)) = W(h(a,b,0)) ⊗ W(h(1,1,0)) ⊗ W(h(r,s,±)) = 0. (3.18)

Since the rank 2 and 3 representations are just products of irreducible representations of type
B, fusion of minimal model representations W(h(a,b,0)) with these vanishes as well. Therefore,
associativity guarantees that

W(h(a,b,0)) ⊗ Representation of type B = 0. (3.19)

This specifies the fusion rules of representations of type W(h(a,b,0)) with all representations
in B, as well as the irreducible representations in N. All that remains is to describe
products of W(h(a,b,0)) with Wa,b or W∗

a.b. Using associativity (3.2) and (3.5), we see
that W(h(a,b,0)) ⊗ W∗

a′,b′ can be written as

W(h(a,b,0)) ⊗ W∗
a′,b′ = W(h(a,b,0)) ⊗ W∗

1,1 ⊗ Wa′,b′

= W(h(a,b,0)) ⊗ W(h(1,1,+)) ⊗ W(h(1,1,+)) ⊗ Wa′,b′ = 0 (3.20)

and therefore the fusion of all W∗
a′,b′ with all W(h(a,b,0)) vanishes. Products of W(h(a,b,0))

with representations of type Wa,b, can be computed using the quotient (2.11)

W(h(a,b,0)) ⊗ Wa′,b′ = W(h(a,b,0)) ⊗ W(h(a′,b′,0)). (3.21)

In summary, we therefore have that the fusion rules of W(h(a,b,0)) satisfy the following.

(1) All products of W(h(a,b,0)) with representations not of type Wa,b or W(h(a,b,0)) vanish.
(2) Products of W(h(a,b,0)) with representations of type Wa,b or W(h(a,b,0)) are given by the

non-logarithmic minimal model fusion rules.

3.3. Associativity

Now that we have extended the fusion rules to all representations of type N, we still need
to prove that they are associative. We do this by considering three cases. First we consider
products of W(h(a,b,0)) with representations of type Wa,b or W(h(a,b,0)), second we consider
products of W(h(a,b,0)) with anything else and third, products not involving representations of
type W(h(a,b,0)).

(1) As we discovered in the previous section, products involving a representation of type
W(h(a,b,0)) together with representations of type Wa,b or W(h(a,b,0)) are given by the
non-logarithmic minimal model fusion rules. These are known to be associative.

(2) As one can see from formula (3.15) and the definitions of N+, N− and N∗, products
involving representations of type B,W(h(a,b,±)) orW∗

a,b will never contain a representation
of type Wa,b or W(h(a,b,0)) as a summand in their result. Therefore, all products involving
representations of type W(h(a,b,0)) and representations not of type Wa,b or W(h(a,b,0))

vanish, regardless of the order in which the product is computed; hence, this case is also
associative.

1 One sees that the quotient space of vectors not lying in the image of words with negative L0-grading is at most
one-dimensional because W(h(1,1,0)) has the nullvector N1 = L−1� at level 1. Since the representations of type
W(h(r,s,±)) are not representations of W(h(1,1,0)), the remaining nullvectors will impose additional constraints and
the level 0 quotient must be zero.
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(3) Finally if we consider the product of three indecomposable representations A,B,C not
of type W(h(a,b,0)), we then have

(A ⊗ B) ⊗ C = (NA ◦ NB(B(A) ⊗ B(B))) ⊗ C

= NA ◦ NB ◦ NC(B(NA ◦ NB(B(A) ⊗ B(B))) ⊗ B(C))

= NA ◦ NB ◦ NC((B(A) ⊗ B(B)) ⊗ B(C))

= NA ◦ NB ◦ NC(B(A) ⊗ B(B) ⊗ B(C)), (3.22)

A ⊗ (B ⊗ C) = A ⊗ (NB ◦ NC(B(B) ⊗ B(C)))

= NA ◦ NB ◦ NC(B(A) ⊗ B(NB ◦ NC(B(B) ⊗ B(C))))

= NA ◦ NB ◦ NC(B(A) ⊗ (B(B) ⊗ B(C)))

= NA ◦ NB ◦ NC(B(A) ⊗ B(B) ⊗ B(C)). (3.23)

Therefore, the fusion rules defined in this section are associative if the fusion rules
in [18, 19] are associative2.

4. The Grothendieck group

We will now study the Grothendieck group, an object closely related to open string spectra.
The Grothendieck group K0 ≡ K0(Rep(W(p, q))) of representations of W(p, q) is, roughly
speaking, the quotient set obtained by identifying two representations if they have the same
character. We denote the equivalence class of a representation R by [R]. The group operation
is Abelian and defined by the direct sum

[R1] + [R2] = [R2 ⊕ R2]. (4.1)

For example, the exact sequences (2.10) and (2.12) imply

[Wa,b] = [W∗
a,b] = [W(h(a,b,0))] + [W(h(a,b,+))]. (4.2)

Since the characters of all indecomposable representations can be written as linear
combinations of characters of irreducible representations (see appendix D), the Grothendieck
group is the free Abelian group generated by the irreducible representations.

For non-logarithmic rational conformal field theories, the Grothendieck group also has a
product structure turning it into a ring which is defined by

[R1] · [R2] = [R1 ⊗ R2]. (4.3)

For the Wp,q triplet models the situation is not quite as simple; a consistent product structure
can no longer be defined for the entire Grothendieck group. The counter example in [17] can
be easily generalized for all (p, q):

[W(h(1,1,0))] · [W∗
a,b] = [W(h(1,1,0)) ⊗ W∗

a,b] = 0 versus

[W(h(1,1,0))] · [W∗
a,b] = [W(h(1,1,0))] · ([W(h(a,b,0))] + [W(h(a,b,+))])

= [W(h(1,1,0)) ⊗ W(h(a,b,0))] + [W(h(1,1,0)) ⊗ W(h(a,b,+))]

= [W(h(a,b,0))]. (4.4)

It was shown in [17], however, that if a representation M has a dual it induces a well-
defined map

K0 → K0

[R] 
→ [M ⊗ R].
(4.5)

2 We have checked this explicitly for (p, q) = (2, 3) in [17] and this is believed to be true for all (p, q).
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We can therefore define the subgroup Kr
0 of K0 generated by [R] for all R which have a dual

representation. As in [17] we believe that these are the representations of type B together
with the representations of type Wa,b. Kr

0 is then spanned by 1
2 (5pq − (p + q) + 1) classes

of representations

Kr
0 := spanZ([Wa,b], [W(h(r,q,±))], [W(h(q,s,±))], [R(2)(h(a,b,+);h(p−a,b,−))],

[R(2)(h(p−a,b,−);h(a,b,+))], [R(2)(h(a,q−b,−);h(a,b,+))]). (4.6)

This is less than the total number of representations of types B and Wa,b since their characters
are linearly dependent as one can see in appendix D. The basis can also be written in terms of
irreducible representations, but the product then no longer corresponds to fusion. Rather one
has to first perform the following substitutions before interpreting the product as fusion

[W(h(a,b,0))] = [R(2)(h(a,b,+);h(p−a,b,−))] − [R(2)(h(p−a,b,−);h(a,b,+))]

[W(h(a,b,+))] = [Wa,b] − [W(h(a,b,0))]

= [Wa,b] + [R(2)(h(p−a,b,−);h(a,b,+))] − [R(2)(h(a,b,+);h(p−a,b,−))]

2[W(h(a,b,−))] = [R(2)(h(a,b,−);h(p−a,b,+))] − 2[W(h(p−a,b,+))]

= [R(2)(h(a,b,−);h(p−a,b,+))] + 2[R(2)(h(p−a,b,+);h(a,b,−))]

− 2[R(2)(h(a,b,−);h(p−a,b,+))] − 2[Wp−a,b]. (4.7)

For example, the square of [W(h(1,1,0))] is then given by

[W(h(1,1,0))] · [W(h(1,1,0))] = ([R(2)(h(1,1,+);h(p−1,1,−))] − [R(2)(h(p−1,1,−);h(1,1,+))])

· ([R(2)(h(1,1,+);h(p−1,1,−))] − [R(2)(h(p−1,1,−);h(1,1,+))])

= [R(2)(h(1,1,+);h(p−1,1,−))
2] + [R(2)(h(p−1,1,−);h(1,1,+))

2]

− 2[R(2)(h(1,1,+);h(p−1,1,−)) ⊗ R(2)(h(p−1,1,−);h(1,1,+))]

= 0, (4.8)

where the fusion products where evaluated using the rules in [18].
By a long but straightforward computation, one sees that

[W(h(a,b,0))] · [W(h(r,s,μ))] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ ·
p−|a+r−p|−1∑
i=|r−a|+1,by2

q−|q−b−s|−1∑
j=|b−s|+1,by2

[W(h(i,j,0))]

if (r, s) ∈ {1, . . . , p − 1} × {1, . . . , q − 1}
0 otherwise

, (4.9)

i.e. the classes of representations of type W(h(a,b,0)) form the ideal

I0 =
⊕

(a,b)∈J

Z[W(h(a,b,0))], (4.10)

where

J := {(a, b)|1 � a � p − 1, 1 � b � q − 1, qa + ps � pq}. (4.11)

It is important to remember, that a number of rank 2 and 3 representations have the
same characters and therefore belong in the same equivalence class, while performing this
computation.

The Grothendieck group has a direct interpretation in terms of cylinder diagrams. It is
therefore interesting to consider the subgroup Kb

0 generated by representations corresponding
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to boundary conditions. The open string spectrum between two boundaries labelled by
representations A and B is given by

Z(q)A→B = trB⊗A∗(qL0−c/24), (4.12)

the character of B ⊗ A∗, or more formally it only depends on the class [B ⊗ A∗]. Restricting
ourselves to the equivalence classes of representations of type B, i.e. drop [Wa,b], Kb

0 is
spanned by 2pq generators:

Kb
0 = spanZ([W(h(r,q,±))], [W(h(p,s,±))]) ⊕ I0⊕

(a,b)∈J

(2Z([W(h(a,b,+))] + [W(h(a,q−b,−))])

⊕ 2Z([W(h(a,b,+))] + [W(h(p−a,b,−))])

⊕ 2Z([W(h(p−a,q−b,+))] + [W(h(a,q−b,−))])). (4.13)

Since all representations of B have duals and close under fusion, Kb
0 also closes under the

product induced by fusion.

5. Projective representations and modular invariant partition functions

In this section we will look for projective representations. These are of particular interest to
us, since it is believed [13, 24] that the bulk spectrum of these theories should be describable
in terms of a quotient of⊕

i

Pi ⊗C P i , (5.1)

where the sum runs over all projective representations and the bar refers to right-movers.
Before we determine which of our W(p, q) representations are projective, we recall one

of a number of equivalent definitions of projective representations.

Definition 5.1. AW(p, q) representationP is projective, if given an intertwiner f : P → M′

and a surjective intertwiner g : M → M′, there exits an intertwiner e : P → M making the
following diagram commute.

P
f

e

M g M
(5.2)

The irreducible representations W(h(p,q,±)) do not share weights with any other W(p, q)

representations in our lists B and N; therefore, they can only have non-trivial intertwiners
with themselves. This makes them promising candidates for being projective. So if we set
P = W(h(p,q,±)) in diagram (5.2) and M′ �= W(h(p,q,±))), we have f ≡ 0 and diagram
(5.2) commutes for e ≡ 0. If on the other hand, P = W(h(p,q,±)) = M′ then by Schur’s
lemma f = cf · id, cf ∈ C and the only M for which g can be surjective is W(h(p,q,+)) with
g = cg · id, cg ∈ C\{0}. Therefore, the diagram (5.2) commutes for e = cf

cg
· id and the two

representations W(h(p,q,±)) are projective.
A further property of projective representations is that their products with representations

that have duals are also projective. We assume that in analogy to [17] the representations of
type B, Wa,b and W∗

a,b have duals. By computing the product of all representations of type

11
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B, Wa,b and W∗
a,b with W(h(p,q,±)), we find 2pq indecomposable representations that also

ought to be projective. We denote these representations by P(h) where h is the weight of the
irreducible representation they are a cover of:

(1) Irreducible representations

W(h(p,q,±)) = P(h(p,q,±));
(2) Rank 2 representations

R(2)(h(a,q,±)) = P(h(a,q,±))

R(2)(h(p,b,±)) = P(h(p,b,±));
(3) Rank 3 representations

R(3)(h(a,b,±)) = P(h(a,b,±)).

This accounts for the projective covers of all representations in B and N, except for W(h(a,b,0)).
In fact, none of the representations in B and N appears to be a projective cover of W(h(a,b,0)).

5.1. Modular invariant partition function

The modular transformation properties of the characters as well as a modular invariant
combination of these characters are given in [20]. It was discovered in [17] that for
(p, q) = (2, 3), this modular invariant function can be written as

Zp,q =
∑

h(r,s,±)

dim(Hom(P(h(r,s,±)),P(h(r,s,±))))
−2 · |χ [P(h(r,s,±))](q)|2,

where Hom(U,W) is the space of intertwiners from U to W . We conjecture following the
arguments of [17] that the relation

Hom(U, V ) ∼= Hom(U ⊗ V ∗,W∗
1,1) (5.3)

holds for the spaces of intertwiners between representations for general (p, q) and can therefore
be used to calculate dim Hom(P(h(r,s,±)),P(h(r,s,±))) using (also in analogy to [17])

dim Hom(U,W∗
1,1) =

⎧⎨
⎩

1 U ∈ {W(h(1,1,0)),W1,1,W∗
1,1,Wp−1,q−1,R(3)(h(1,1,+))},

R(2)(h(1,1,+);h(p−1,1,−)),R(2)(h(1,1,+);h(1,q−1,−))}
0 else.

(5.4)

We find that
dim Hom(P(h(p,q,±)),P(h(p,q,±))) = 1 dim Hom(P(h(r,q,±)),P(h(r,q,±))) = 2

dim Hom(P(h(p,s,±)),P(h(p,s,±))) = 2 dim Hom(P(h(a,b,±)),P(h(a,b,±))) = 4.
(5.5)

These values for the dimension of the Hom-spaces are also consistent with the conjectured
embedding structures in [18]. We thus have

Zp,q = |χ [P(h(p,q,+))](q)|2 + |χ [P(h(p,q,−))](q)|2

+
1

4

(
p∑

r=1

|χ [P(h(r,q,+))](q)|2 + |χ [P(h(r,q,−))](q)|2
)

+
1

4

(
q∑

s=1

|χ [P(h(p,s,+))](q)|2 + |χ [P(h(p,s,−))](q)|2
)

+
1

16

⎛
⎜⎜⎝ ∑

1�a�p
1�b�q

|χ [P(h(a,b,+))](q)|2 + |χ [P(h(a,b,−))](q)|2

⎞
⎟⎟⎠ . (5.6)

12



J. Phys. A: Math. Theor. 43 (2010) 045212 S Wood

We have convinced ourselves of the modular invariance of the formula above, by extensive
numerical checks, but unfortunately the general expression seems to be to unwieldy for
computer algebra systems to handle and we have not yet found a way to verify it for all
coprime pairs (p, q).

6. Conclusions

In this paper we have studied the Wp,q triplet models. The structure we have found is very
analogous to the results already obtained for the W2,3 models in [17]. The representations
appearing in [17] were generalized for arbitrary (p, q) and we showed that the fusion rules
can easily be extended to these new representations by conjecturing very plausible fusion
rules for W∗

1,1,W(h(1,1,+)) and W(h(1,1,−)) as well as using associativity and commutativity of
the fusion product. Subsequently, the Grothendieck group K0 was constructed together with
subgroups Kr

0 and Kb
0 on which consistent fusion-induced products can be defined. As a final

exercise, the projective representations where identified and used to suggest the structure of a
modular invariant bulk theory.

This entire representations theoretic analysis suggests that a consistent boundary theory
can be defined from which one can then construct a bulk theory in analogy to the Cardy case
[25–29] or as was done for the W1,p models in [13]. It would be very interesting to construct
the bulk theory for example for (p, q) = (2, 3). If this succeeds, this should probably directly
generalize to (p, q) as the analysis of the fusion rules in this paper did.
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Appendix A. Notation

Unless stated otherwise we will always assume that

α ∈ {0, . . . , p}, r ∈ {1, . . . , p}, a ∈ {1, . . . , p − 1},
β ∈ {0, . . . , q}, s ∈ {1, . . . , q}, b ∈ {1, . . . , q − 1}.

We will be using the notation of [20] to compactly label the weights

h(a,b,0) := ha,b = hp−a,q−b

h(r,s,+) := h2p−r,s = hr,2q−s = hr,s + (p − r)(q − s) (A.1)

h(r,s,−) := h3p−r,s = hr,3q−s = hr,s + (p − r)(q − s) +
5

4
pq − ps + qr

2
.

Appendix B. Dictionary to the notation in other works

B.1. The notation in [18, 19]

The fusion rules for the image of B and representations of type Wa,b are contained in
[18, 19]. Here we give a dictionary between the two notations

13
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Our notation Notation in [18, 19]
Wa,b (a, b)

W(h(r,q,−(−)κ )) (r, κq)

W(h(p,s,−(−)κ )) (κp, s)

R(2)(h(p−a,b,−(−)κ );h(a,b,(−)κ )) Ra,0
κp,b

R(2)(hp−a,q,−(−)κ ) Ra,0
κp,q

R(2)(h(a,q−b,−(−)κ );h(a,b,(−)κ )) R0,b
a,κq

R(2)(h(p,q−b,−(−)κ )) R0,b
p,κq

R(3)(h(p−a,q−b,+)) Ra,b
p,q

R(3)(h(p−a,q−b,−)) Ra,b
p,2q

.

Here, κ = 1, 2. The representations of type W∗
a,b, W(h(a,b,±)) and W(h(a,b,0)) are not

considered in [18, 19].

B.2. The notation in [20]

Our notation Notation in [20]
Wa,b K+

a,b

W(h(a,b,0)) Xa,b

W(h(a,b,+)) X +
a,b

W(h(a,b,−)) K−
a,b = X−

a,b

W(h(r,q,±)) K±
r,q = X±

r,q

W(h(p,s,±)) K±
p,s = X±

p,s

The representations of type W∗
a,b as well as the rank 2 and 3 representations are not considered

in [20].

B.3. The notation in [17]

Our notation Notation in [17]
W1,1 W
W∗

1,1 W∗

W1,2 Q
W∗

1,2 Q∗

R(2)(h(a,b,+);h(p−a,b,−)) R(2)(h(a,b,0), h(a,b,+))h(p−a,b,−)

R(2)(h(a,b,+);h(a,q−b,−)) R(2)(h(a,b,0), h(a,b,+))h(a,q−b,−)

R(2)(h(a,q−b,−);h(a,b,+)) R(2)(h(a,b,+), h(a,q−b,−))

R(2)(h(p−a,b,−);h(a,b,+)) R(2)(h(a,b,+), h(p−a,b,−))

R(2)(h(a,q,+)) R(2)(h(a,q,+), h(a,q,+))

R(2)(h(p−a,b,−)) R(2)(h(a,q,+), h(p−a,q,−))

R(2)(h(p,b,+)) R(2)(h(p,b,+), h(p,b,+))

R(2)(h(p,q−b,−)) R(2)(h(p,b,+), h(p,q−b,−))

R(3)(h(a,b,+)) R(3)(h(a,b,0), h(a,b,0), h(a,b,+), h(a,b,+))

R(3)(h(a,q−b,−)) R(3)(h(a,b,0), h(p−a,q−b,+), h(a,b,+), h(a,q−b,−))

14
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Appendix C. Fusion for representations of type Wa,b

In order to have some fusion rules at hand, we include the rules for products of representations
of type Wa,b in our notation; please refer to [18, 19] for the remaining rules:

Wa,b ⊗ Wa′,b′ =
p−|p−a−a′ |−1⊕

i=|a−a′ |+1
by 2

q−|q−b−b′ |−1⊕
j=|b−b′ |+1

by 2

Wi,j

⊕
a+a′−p−1⊕

α=a+a′−p−1 mod 2
by 2

q−|q−b−b′ |−1⊕
j=|b−b′ |+1

by 2

R(2)(h(p−α,j,+);h(α,j,−))

⊕
b+b′−q−1⊕

β=b+b′−q−1 mod 2
by 2

p−|p−a−a′ |−1⊕
i=|a−a′ |+1

by 2

R(2)(h(i,q−β,+);h(i,β,−))

⊕
a+a′−p−1⊕

α=a+a′−p−1 mod 2
by 2

b+b′−q−1⊕
β=b+b′−q−1 mod 2

by 2

R(3)(h(p−α,q−β,+)). (C.1)

Here, we used the shorthand

R(2)(h(p,j,+);h(0,j,−)) = W(h(p,j,+)), R(2)(h(i,q,+);h(i,0,−)) = W(h(i,q,+)),

R(3)(h(p,q−b)) = R(2)(h(p,q−b)), R(3)(h(p−a,q)) = R(2)(h(p−a,q)),

R(3)(h(p,q)) = W(h(p,q)).

(C.2)

Appendix D. Characters

The characters of the reducible but indecomposable representations can be expanded in terms
of χ(a,b,μ), the characters of the irreducible representations W(h(a,b,μ)):

χ [Wa,b] = χ [W∗
a,b] = χ(a,b,0) + χ(a,b,+)

χ [R(2)(h(a,b,±);h(p−a,b,∓))] = δ+,± · χ(a,b,0) + 2χ(a,b,±) + 2χ(p−a,b,∓)

χ [R(2)(h(a,b,±);h(a,q−b,∓))] = δ+,± · χ(a,b,0) + 2χ(a,b,±) + 2χ(a,q−b,∓)

χ [R(2)(h(r,q,±))] = 2χ(r,q,±) + 2χ(p−r,q,∓)

χ [R(2)(h(p,s,±))] = 2χ(p,s,±) + 2χ(p,q−s,∓)

χ [R(3)(h(a,b,+))] = 2χ(a,b,0) + 4χ(a,b,+) + 4χ(p−a,q−b,+) + 4χ(p−a,b,−) + 4χ(a,q−b,−)

χ [R(3)(h(a,b,−))] = 2χ(p−a,b,0) + 4χ(p−a,b,+) + 4χ(a,q−b,+) + 4χ(a,b,−) + 4χ(p−a,q−b,−).

We therefore have the following equalities among characters and thus also among classes of
the Grothendieck group K0:

χ [R(2)(h(r,q,±))] = χ [R(2)(h(r,q,∓))]

χ [R(2)(h(p,s,±))] = χ [R(2)(h(p,s,∓))]

χ [R(2)(h(a,b,+);h(p−a,b,−))] = χ(a,b,0) + χ [R(2)(h(p−a,b,−);h(a,b,+))]

χ [R(2)(h(a,b,+);h(a,q−b,−))] = χ(a,b,0) + χ [R(2)(h(a,q−b,−);h(a,b,+))]

χ [R(3)(h(a,b,+))] = χ [R(3)(h(p−a,q−b,+))] = χ [R(3)(h(p−a,b,−))]

= χ [R(3)(h(a,q−b,−))]. (D.1)
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Appendix E. Consistency checks

The fusion rules (3.15) predict that

W(h(1,1,+)) ⊗ W(h(1,1,+)) = N+ ◦ N+(W1,1 ⊗ W1,1) (E.1)

= N∗(W1,1) = W∗
1,1. (E.2)

We have checked this for (p, q) = (2, 3), (2, 5), (3, 4), (3, 5) using the NGK-algorithm
[22, 23] to level 0. W(h(1,1,+)) has weight

h(1,1,+) = h2p−1,1 = h1,2q−1 (E.3)

and therefore nullvectors at levels 2p − 1 and 2q − 1. According to [31], these are given by

N2p−1 =
2p−1∑
k=1

∑
�i�1

�1+···+�k=2p−1

((2p − 1)!)2
(− q

p

)2p−1−k

∏k−1
i=1 (�1 + · · · + �i)(2p − 1 − �1 − · · · − �i)

L−�1 · · · L−�k
μ, (E.4)

N2q−1 =
2q−1∑
k=1

∑
�i�1

�1+···+�k=2q−1

((2q − 1)!)2
(−p

q

)2q−1−k

∏k−1
i=1 (�1 + · · · + �i)(2q − 1 − �1 − · · · − �i)

L−�1 · · · L−�k
μ, (E.5)

where μ is the highest weight vector of W(h(1,1,+)).

• (p, q) = (2, 3), h(1,1,+) = 2.

The level 0 space is spanned by μ ⊗C μ, (L−1μ) ⊗C μ and is obtained by quotienting
out N3 ⊗C μ, (L−1N3) ⊗C μ,

(
L2

−1N3
) ⊗C μ and N5 ⊗C μ. This leads to the relation(

L2
−1μ

) ⊗C μ ∼= −7(L−1μ) ⊗C μ − 8μ ⊗C μ. (E.6)

The L0-action is then given by

	1,0(L0)(μ ⊗C μ) = (L−1μ) ⊗C μ + 4μ ⊗C μ

	1,0(L0)(μ ⊗C μ) = (L−1μ)2 ⊗C μ + 5(L−1μ) ⊗C μ (E.7)

= −2(L−1μ) ⊗C μ − 8μ ⊗C μ.

Thus, we can represent it by the matrix

L0 =
(

4 −8
1 −2

)
, which is conjugate to

(
0 0
0 2

)
, (E.8)

which is consistent with W∗
1,1.

• (p, q) = (2, 5), h(1,1,+) = 4.

The level 0 space is spanned by μ ⊗C μ, (L−1μ) ⊗C μ and is obtained by quotienting
out N3 ⊗C μ, . . . ,

(
L6

−1N3
) ⊗C μ and N5 ⊗C μ. This leads to the relation(

L2
−1μ

) ⊗C μ ∼= −13(L−1μ) ⊗C μ − 32μ ⊗C μ. (E.9)

The L0-action is then given by

	1,0(L0)(μ ⊗C μ) = (L−1μ) ⊗C μ + 8μ ⊗C μ

	1,0(L0)(μ ⊗C μ) = (L−1μ)2 ⊗C μ + 9(L−1μ) ⊗C μ (E.10)

= −4(L−1μ) ⊗C μ − 32μ ⊗C μ.

Thus, we can represent it by the matrix

L0 =
(

8 −32
1 −4

)
, which is conjugate to

(
0 0
0 4

)
, (E.11)

which is consistent with W∗
1,1.
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• (p, q) = (3, 4), h(1,1,+) = 6.

The level 0 space is spanned by μ ⊗C μ, (L−1μ) ⊗C μ and is obtained by quotienting
out N5 ⊗C μ, . . . ,

(
L4

−1N5
) ⊗C μ and N7 ⊗C μ, . . . ,

(
L2

−1N7
) ⊗C μ. This leads to the

relation (
L2

−1μ
) ⊗C μ ∼= −19(L−1μ) ⊗C μ − 72μ ⊗C μ. (E.12)

The L0-action is then given by

	1,0(L0)(μ ⊗C μ) = (L−1μ) ⊗C μ + 12μ ⊗C μ

	1,0(L0)(μ ⊗C μ) = (L−1μ)2 ⊗C μ + 13(L−1μ) ⊗C μ (E.13)

= −6(L−1μ) ⊗C μ − 72μ ⊗C μ.

Thus, we can represent it by the matrix

L0 =
(

12 −72
1 −6

)
, which is conjugate to

(
0 0
0 6

)
, (E.14)

which is consistent with W∗
1,1.

• (p, q) = (3, 5), h(1,1,+) = 8. The level 0 space is spanned by μ⊗Cμ, (L−1μ)⊗Cμ and is
obtained by quotienting outN5⊗Cμ, . . . ,

(
L6

−1N5
)⊗Cμ andN9⊗Cμ, . . . ,

(
L2

−1N9
)⊗C

μ. This leads to the relation(
L2

−1μ
) ⊗C μ ∼= −25(L−1μ) ⊗C μ − 128μ ⊗C μ. (E.15)

The L0-action is then given by

	1,0(L0)(μ ⊗C μ) = (L−1μ) ⊗C μ + 16μ ⊗C μ

	1,0(L0)(μ ⊗C μ) = (L−1μ)2 ⊗C μ + 17(L−1μ) ⊗C μ (E.16)

= −8(L−1μ) ⊗C μ − 128μ ⊗C μ.

Thus, we can represent it by the matrix

L0 =
(

16 −128
1 −8

)
, which is conjugate to

(
0 0
0 8

)
, (E.17)

which is consistent with W∗
1,1.

Note added. While this paper was being written another paper with significant overlap appeared on the arXiv [30].
In [30] the same fusion algebra is computed from a different perspective by focusing on symmetry principles. The
general philosophy in this paper however, was to use associativity and commutativity to reexpress arbitrary fusion
products as known products and products involving W∗

1,1, W(h(1,1,+)) and W(h(1,1,−)) for which we conjectured
fusion rules.
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